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Camera Pose Regression

Input                              Output

𝑥𝜖ℝ3 𝑞𝜖ℝ4

Position Orientation

ሻ𝑝 = (𝑥, 𝑞
Camera Pose

Camera Pose Estimation

Absolute Camera Pose Regression
A learning-based method for solving the camera pose estimation problem

Trained 
model ሻ𝑝 = (𝑥, 𝑞

2



Camera Pose Estimation at Inference Time 
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✓Light-weight
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The Cons of Single-Scene APRs

For localizing images from N scenes we need to train, deploy 
and choose from N models 

Trained 
model ሻ𝑝 = (𝑥, 𝑞

✓  Fast
✓  Light-weight 
✓  Standalone

x Less accurate
x Trained per scene
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Learning Multi-Scene Pose Regression with 
Transformers 
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Since position and orientation are related to 
different visual cues, we extract activation 
maps at different resolutions

We extract visual features using a 
convolutional backbone and then encode, 
project and flatten activation maps
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Orientation Encoder

Position Encoder

Two Transformer Encoders attend to 
task-specific visual cues

Attending to blobs and corners for 
position estimation

Attending to elongated lines for 
orientation estimation
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Decoder Attention maps when processing an image from 
the Old Hospital scene
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We concatenate the decoder 
outputs to in order to select the 
scene 

Position and orientation are regressed 
from the selected outputs 
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Position Loss Orientation Loss

መ𝑆𝑥 and መ𝑆𝑞 are learned parameters representing task uncertainty

Learned Pose Loss (Kendall et al., 2017)



Comparison with MSPN

Median position and orientation errors of our method and 
a recent multi-scene approach (MSPN) for the CambridgeLandmarks (top) and 
7Scenes (bottom) datasets 

12



Comparison with Single-Scene APRs

Mean of median position and orientation errors and the respective ranks of our 
method, MSPN and state-of-the-art single-scene APRs on the CambridgeLandmarks
(left) and 7Scenes (right) datasets. 
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From Multi-Scene to Multi-Dataset

Our method is able to learn multiple scenes from datasets with 
different scales and properties 
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Robustness and Scalability 

Our method maintains state-of-the-art performance 
across architectural choices

The memory footprint for a 
1000 scenes with a single scene 
APR approach is ~5000Mb
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Conclusion

We propose a novel transformer-based approach for multi-scene absolute 
pose regression

• Two Transformer Encoders separately attend to position- and orientation-
informative image cues

• Two Transformer Decoders attend to scene-specific information

Our approach is shown to provide a new state-of-the-art APR accuracy
• Outperforming single and multi-scene APRs across indoor and outdoor benchmarks

• Demonstrating robustness to specific architecture choices
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https://github.com/yolish/multi-
scene-pose-transformer
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